A Parallel Newton Multigrid Method for High Order Nite Elements and Its Application to Numerical Existence Proofs for Elliptic Boundary Value Equations

نویسنده

  • Christian Wieners
چکیده

We describe a parallel algorithm for the numerical computation of guaranteed bounds for solutions of elliptic boundary value equations of second order. We use C 2-Hermite elements and a parallel Newton multigrid method to produce approximations of high accuracy. Then, we compute upper bounds for the defect and enclosures for the eigenvalues of the linearization. In order to obtain veriied bounds, these computations are realized in interval arithmetic. The application of the Newton-Kantorovich-theorem yields the existence of a solution and error bounds for the approximation. The method is implemented on a 256 processor transputer grid and tested for the Bratu problem ?u = exp(u).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Newton Multigrid Method for High Order Nite Elements and Its Application on Numerical Existence Proofs for Elliptic Boundary Value Equations

We describe a parallel algorithm for the numerical computation of guaranteed bounds for solutions of elliptic boundary value equations of second order. We use C 2-Hermite-elements and a parallel Newton multigrid method to produce approximations of high accuracy. Then, we compute upper bounds for the defect and enclosures for the eigenvalues of the linearization. In order to obtain veriied bound...

متن کامل

46. G. Wittum. Multi-grid Methods for Stokes and Navier-stokes Equations with Transform- Ing Smoothers: Algorithms and Numerical Results. Gmres: a Generalized Minimal Residual Algorithm for Solving Non-symmetric Linear Systems.grid and Iccg for Problems with Interfaces. In

Numerical solution of the stationary navier-stokes equations by means of a multiple grid method and newton iteration. Distributive iterationen f ur indeenite Systeme als Gll atter in Mehrgitter-verfahren am Beispiel der Stokes-und Navier-Stokes-Gleichungen mit Schwerpunkt auf unvollstt andingen Zerlegungen. PhD thesis, Christan-Albrechts Universitt at, Kiel, 1986. 145. G. Wittum. Linear iterati...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

Computer assisted proofs of solutions to Nonlinear elliptic partial differential equations

In this article, a numerical method is presented for computer assisted proofs to the existence and uniqueness of solutions to Dirichlet boundary value problems in a certain class of nonlinear elliptic equations. In a weak formulation of the problem, a weak solution is described as a zero point of a certain nonlinear map. Based on Newton-Kantorovich theorem, a numerical existence and local uniqu...

متن کامل

A Cascadic Algorithm for the Solution Ofnonlinear Sign - Indefinite Problemsvladimir

In this paper we propose a cascadic algorithm for a weakly non-linear sign-indeenite elliptic Dirichlet problem. The standard nite element discretization with piecewise linear nite elements leads to a system of non-linear equations. We solve these nonlinear equations by a cascadic organization of Newton's method with \frozen derivatives" on a sequence of nested grids. This gives a simple versio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996